Black hole ‘morsels’ could finally prove Stephen Hawking’s famous theory right

Stephen Hawking suggested nothing lasts forever, including black holes. Scientists may have a way to prove it at last.

by 9SIX
81 views
merger

5454One of the most profound messages Stephen Hawking left humanity with is that nothing lasts forever — and, at last, scientists could be ready to prove it.

This idea was conveyed by what was arguably Hawking’s most important work: the hypothesis that black holes “leak” thermal radiation, evaporating in the process and ending their existence with a final explosion. This radiation would eventually come to be known as “Hawking radiation” after the great scientist. To this day, however, it’s a concept that remains undetected and purely hypothetical. But now, some scientists think they may have found a way to finally change that; perhaps we’ll soon be on our way toward cementing Hawking radiation as fact.

The team suggests that, when larger black holes catastrophically collide and merge, tiny and hot “morsel” black holes may be launched into space — and that could be the key.

Importantly, Hawking had said that the smaller the black hole is, the faster it would leak Hawking radiation. So, supermassive black holes with masses millions or billions of time that of the sun would theoretically take longer than the predicted lifetime of the cosmos to fully “leak.” In other words, how would we even detect such immensely long-term leakage? Well, maybe we can’t — but when it comes to these asteroid-mass black hole morsels, dubbed “Bocconcini di Buchi Neri” in Italian, we may be in luck.

Tiny black holes like these could evaporate and explode on a time scale that is indeed observable to humans. Plus, the end of these black holes’ lifetimes should be marked by a characteristic signal, the team says, that indicates their deflation and death via the leaking of Hawking radiation.

“Hawking predicted that black holes evaporate by emitting particles,” Francesco Sannino, a scientist behind this proposal and a theoretical physicist at the University of Southern Denmark, told Space.com. “We set out to study this and the observational impact of the production of many black hole morsels, or ‘Bocconcini di Buchi Neri,’ that we imagined forming during a catastrophic event such as the merger of two astrophysical black holes.”

Source: livescience

logo lb webp

Copyright @2024 Developed by Plamen Alexandrov

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept